
Polycomp Documentation
Release 1.0

Maurizio Tomasi

Oct 08, 2017

Contents

1 How to get the latest Polycomp version 3
1.1 Requisites . 3

2 An introduction to Polycomp 5
2.1 Compressing files using polycomp . 5
2.2 Decompressing files using polycomp . 7

3 Writing a configuration file 9
3.1 Basic syntax . 9
3.2 Specifying which data to compress . 9
3.3 Where to take the data to compress . 10
3.4 How to compress the data . 10

4 Optimizing polynomial compression parameters 13
4.1 Scanning rectangular regions of the parameter space . 13
4.2 Simplex-downhill strategy . 13

5 Polycomp file format 15
5.1 Keywords . 15
5.2 Table data . 16
5.3 Debug-mode for polynomial compression . 16

6 Indices and tables 17

i

ii

Polycomp Documentation, Release 1.0

Contents:

Contents 1

Polycomp Documentation, Release 1.0

2 Contents

CHAPTER 1

How to get the latest Polycomp version

To obtain the latest version of Polycomp, first be sure to have an updated version of the libpolycomp library. It is
available at the link https://github.com/ziotom78/libpolycomp.

The source code for Polycomp is available at https://github.com/ziotom78/polycomp: download and install it using
git (https://git-scm.com/). Refer to that page for any prerequisite. The typical sequence of commands used to install
polycomp is the following:

git clone https://github.com/ziotom78/polycomp
cd polycomp
python3 setup.py build

If you want to install polycomp and the Python bindings to libpolycomp, you must run the command install:

python3 setup.py install

either as a super-user or using sudo.

Requisites

Polycomp requires the following tools:

• Python (both version 2 and 3 are fine);

• click (http://click.pocoo.org/5/), automatically installed by setup.py;

• numpy (http://www.numpy.org/), automatically installed by setup.py;

• Either astropy (version 0.4 or greater, http://www.astropy.org/, the preferred solution) or pyfits (http://www.stsci.
edu/institute/software_hardware/pyfits). (The setup.py script installs Astropy.)

3

https://github.com/ziotom78/libpolycomp
https://github.com/ziotom78/polycomp
https://git-scm.com/
http://click.pocoo.org/5/
http://www.numpy.org/
http://www.astropy.org/
http://www.stsci.edu/institute/software_hardware/pyfits
http://www.stsci.edu/institute/software_hardware/pyfits

Polycomp Documentation, Release 1.0

4 Chapter 1. How to get the latest Polycomp version

CHAPTER 2

An introduction to Polycomp

polycomp is a Python program that relies on the libpolycomp library (https://github.com/ziotom78/libpolycomp)
to compress one-dimensional datasets in FITS format. It has been optimized for datasets produced by astronomical
experiments where large FITS tables store time-ordered measurements.

The program takes as input tables in FITS files and assembles them into files with extension .pcomp. The latters are
FITS files in disguise, where each table taken from the input files is compressed using one of the following compression
schemas:

Run-length encoding This works extremely well for columns containing long sequences of repeated integer values,
such as quality flags.

Differenced run-length encoding This is a variant of the preceding scheme, and it works with integer numbers which
increase regularly. A typical example is the time recorded by a digital clock.

Quantization This lossy compression scheme reduces the number of bits used for storing floating-point numbers. It
is useful for compressing sequences of numbers measured by digital instruments, if the number of bits of the
raw measurement is significantly lower than the standard size of floating-point numbers (32-bit/64-bit).

Polynomial compression This compression works for smooth, noiseless data. It is a lossy compression scheme. The
program allows to set an upper bound to the compression error.

Zlib This widely used compression is implemented using the zlib library (http://www.zlib.net/).

Bzip2 Another widely used compression scheme, implemented using the bzip2 library (http://www.bzip.org/).

polycomp is a command-line program which can either compress or decompress data. In the following sections we
illustrate how to compress a set of FITS files into one single .pcomp file, and then we show how to decompress it.

Compressing files using polycomp

To compress tables from one or more FITS files, the user must prepare a configuration file which specifies where
to look for the tables and which kind of compression apply to each of them. Such configuration files are parsed
using the widely used configparse Python library: the syntax of such files is described in the standard Python
documentation, available at https://docs.python.org/3/library/configparser.html.

5

https://github.com/ziotom78/libpolycomp
http://www.zlib.net/
http://www.bzip.org/
https://docs.python.org/3/library/configparser.html

Polycomp Documentation, Release 1.0

Let’s consider as an example how to compress the TOI files available on the Planck Legacy Archive (http://www.
cosmos.esa.int/web/planck/pla). Such TOIs contain the time-ordered information acquired by the two instruments
onboard the spacecraft, LFI and HFI. In order to cut download times, we consider the smallest TOIs in the database:
those produced by the radiometer named LFI-27M. There are more than one kind of TOIs: we concentrate on the two
most useful ones, the differenced TOIs (containing the actual measurements of the radiometer) and the pointing TOIs
(containing the direction of view as a function of time).

Download the TOIs at the following addresses:

• http://pla.esac.esa.int/pla-sl/data-action?TIMELINE.TIMELINE_OID=36063 (differenced scientific data,
96 MB, save it into file sci.fits)

• http://pla.esac.esa.int/pla-sl/data-action?TIMELINE.TIMELINE_OID=2062650 (pointings, 223 MB,
save it into file ptg.fits)

Such TOIs contain the time-ordered information for all the 30 GHz radiometers (LFI-27M, LFI-27S, LFI-28M, LFI-
28S): each HDU contains information about just one radiometer. We are interested only in LFI-27M, so we must tell
polycomp which data to extract from both files.

Create a text file named pcomp_LFI27M.conf with the following content:

[polycomp]
tables = obt_time, theta, phi, psi, diff, flags

[obt_time]
file = sci.fits
hdu = 1
column = OBT
compression = diffrle
datatype = int64

[theta]
file = ptg.fits
hdu = LFI27M
column = THETA
compression = polynomial
num_of_coefficients = 8
samples_per_chunk = 80
max_error = 4.8e-6
use_chebyshev = True

[phi]
file = ptg.fits
hdu = LFI27M
column = PHI
compression = polynomial
num_of_coefficients = 8
samples_per_chunk = 80
max_error = 4.8e-6
use_chebyshev = True

[psi]
file = ptg.fits
hdu = LFI27M
column = PSI
compression = polynomial
num_of_coefficients = 8
samples_per_chunk = 80
max_error = 4.8e-6
use_chebyshev = True

6 Chapter 2. An introduction to Polycomp

http://www.cosmos.esa.int/web/planck/pla
http://www.cosmos.esa.int/web/planck/pla
http://pla.esac.esa.int/pla-sl/data-action?TIMELINE.TIMELINE_OID=36063
http://pla.esac.esa.int/pla-sl/data-action?TIMELINE.TIMELINE_OID=2062650

Polycomp Documentation, Release 1.0

[diff]
file = sci.fits
hdu = LFI27M
column = LFI27M
compression = quantization
bits_per_sample = 20

[flags]
file = sci.fits
hdu = LFI27M
column = FLAG
compression = rle
datatype = int8

This file describes the way input data will be compressed by polycomp. Run the program with the following syntax:

polycomp.py compress pcomp_LFI27M.conf compressed.pcomp

This command will produce a file named compressed.pcomp, which contains the six compressed columns of data
specified in the configuration file. The file format used for compressed.pcomp is based on the FITS standard, and
you can therefore use any FITS library/program to access its data. (Of course, to actually decompress the data in it
you must use libpolycomp.)

Decompressing files using polycomp

Decompression is considerably simpler than compression, as it does not require to prepare a configuration file. You
have to specify the input .pcomp file and the output FITS file, as in the following example:

polycomp.py decompress compressed.pcomp decompressed.fits

By default, polycomp will save every column of data in a separated HDU file within decompressed.fits. If all
the columns in compressed.pcomp are of the same length, you can use the --one-hdu flag to save everything
in one HDU:

polycomp.py decompress --one-hdu compressed.pcomp decompressed.fits

2.2. Decompressing files using polycomp 7

Polycomp Documentation, Release 1.0

8 Chapter 2. An introduction to Polycomp

CHAPTER 3

Writing a configuration file

In this section we describe how to write a configuration file which tells Polycomp which data to compress, and how.

Note for Python developers: Polycomp configuration files are parsed using Python’s configparse library. Refer to its
documentation for more information about all the facilities provided by this format.

Basic syntax

Empty lines and lines starting with # are ignored.

Polycomp configuration files are divided in sections, each marked by its name enclosed in square brackets, like in the
following example:

[section 1]
Here are the contents of "section 1"

[section 2]
Et cetera

Within each section, the file is expected to contain a sequence of key/value pairs, as in the following example:

cmb_temperature = 2.7
speed_of_light = 3.0e8

Strings must be specified without single/double quotes:

file_path = /data/my_test_data.fits

Specifying which data to compress

Every configuration file must at least contain one section named polycomp. This section should contain the key
tables, which specifies a comma-separated list of tables that will be included in the compressed .pcomp file

9

Polycomp Documentation, Release 1.0

generated by the program. For every table specified here there must be a section (either before or after this one) with
the same name, where details about the table are to be provided.

Here is an example:

[polycomp]
tables = time, temperature, pressure

[time]
Here we specify where to take time data, and how to compress them

[temperature]
Ditto for the temperature...

[pressure]
...and for the pressure

In the next sections we are going to explain what should every “table section” contain.

Where to take the data to compress

In each table section the following key/value pairs must be present:

• The file key specifies the path to the FITS file containing the data to be compressed.

• The hdu key specifies the number/name of the HDU within the FITS file (the first HDU is 1).

• The column key specifies the number/name of the column in the HDU (the first column is 1).

Here is an example:

file = /opt/data/experiment_1.fits
hdu = 1
column = TIME

How to compress the data

The compression key must be present in each table section. It contains a string which identifies the compression
algorithm to use, and it can be one of the following:

Value Algorithm
none No compression
rle Run-Length Encoding (RLE)
diffrle Differential RLE
quantization Quantization of floating-point values
polynomial Polynomial compression
zlib Zlib-based compression
bzip2 Bzip2-based compression

The none, rle and diffrle compression algorithms do not require other key/value pairs. For all the other cases,
they are presented in the next subsections.

10 Chapter 3. Writing a configuration file

Polycomp Documentation, Release 1.0

Quantization parameters

The only parameter required for this kind of compression is bits_per_sample, which specifies the number of
bits to be used with each sample. Typical values are integers less than 32 or 64 bits, depending on the width of the
floating-point type used in the input data.

Polynomial compression parameters

There are a number of key/value pairs that are understood when using this algorithm. Not every pair is required; in a
handful of cases, Polycomp can provide a default value.

Key Default value
num_of_coefficients (Required)
samples_per_chunk (Required)
max_error (Required)
use_chebyshev True
period If not specified, the input data will be assumed not to be periodic.
no_smart_optimization False
opt_delta_coeffs 1
opt_delta_samples 1
opt_max_num_of_iterations 0 (no upper limit)

The meaning of the parameters is the following:

• num_of_coefficients specifies the number of coefficients of the fitting polynomial, i.e., deg p(x) +
1. The best value for this parameter depends heavily on the input data to be compressed.

• samples_per_chunk specifies the number of samples in each chunk. This number must always be greater
than num_of_coefficients.

• If use_chebyshev is set to False, the so-called “simple compression algorithm” will be used. In some
situations the code might run faster, but it can produce significantly worse compression ratios.

• If the input data are periodic, period should be set to their period (e.g., 2𝜋 for angles measured in radians).
The default is not to assume the input data periodic.

The remaining parameters (no_smart_optimization, opt_delta_coeffs, opt_delta_samples, and
opt_max_num_of_iterations) are used when the user wants to search the best possible configuration for the
polynomial compressor.

Zlib/Bzip2 parameters

3.4. How to compress the data 11

Polycomp Documentation, Release 1.0

12 Chapter 3. Writing a configuration file

CHAPTER 4

Optimizing polynomial compression parameters

Polycomp implements a number of tools to simplify the choice of the parameters for polynomial compression. The
parameters are 𝑁chunk, the number of samples per chunk, and deg 𝑝(𝑥) + 1, the number of coefficients in the interpo-
lating polynomial. Polycomp’s strategy to optimize these parameters is to test a number of configuration and pick the
one with the best compression ratio 𝐶𝑟.

Two algorithms are implemented:

• A naive algorithm that scans rectangular regions of the parameter space 𝑁chunk × (deg 𝑝(𝑥) + 1);

• A simplex-downhill algorithm that hunts for local minima in the parameter space.

Scanning rectangular regions of the parameter space

To find the best values for 𝑁chunk and (deg 𝑝(𝑥) + 1) within a rectangular region of the parameter plane,
the user can specify the values to be checked using the usual parameters num_of_coefficients and
samples_per_chunk. Instead of specifying only one value, a set of values can be specified using the follow-
ing syntax:

• Ranges can be specified using the syntax NN-MM or NN:MM;

• Intervals can be specified using the syntax NN:D:MM, where D is the interval;

• Multiple values and ranges can be concatenated, using commas (,) as separators.

Simplex-downhill strategy

13

Polycomp Documentation, Release 1.0

14 Chapter 4. Optimizing polynomial compression parameters

CHAPTER 5

Polycomp file format

We present here a detailed description of the compressed files written by Polycomp.

Polycomp files are FITS files where each 1-D datastream is saved in its own HDU. A number of FITS keyword defined
here are used to store details about the datastream, such as the compression algorithm and other information needed
for the decompression. It is possible to access Polycomp files using any FITS library. Notable examples are cfitsio
and Astropy (through the io.fits module).

Keywords

Any Polycomp file contains one or more binary table HDUs. Each HDU contains the data required to decompress one
1-D table. The order of the HDUs is the same as the order specified in the Polycomp configuration file used for the
compression.

The following keyword are defined in each of the table HDUs:

Keyword Type Meaning
PCSRCTP String NumPy type of the input data
PCCOMPR String Kind of compression algorithm used
PCNUMSA Integer Number of uncompressed samples
PCNUMSA Integer Number of uncompressed samples
PCUNCSZ Integer Size of the uncompressed samples, in bytes
PCCOMSZ Integer Size of the compressed samples, in bytes
PCTIME Float Time needed to compress the data
PCCR Float Compression ratio

The allowed strings for PCCOMPR are the following:

• none: no compression;

• rle: Run-Length Encoding;

• diffrle: Differenced Run-Length Encoding;

• quantization: Floating-point quantization;

15

Polycomp Documentation, Release 1.0

• polynomial: Polynomial compression (with or without the Chebyshev step);

• zlib: zlib-based compression;

• bzip2: bzip2-based compression.

If the algorithm is quantization, the following keywords are saved in the HDU header as well:

Keyword Type Meaning
PCELEMSZ Integer Number of bits per uncompressed sample
PCBITSPS Integer Number of bits per compressed sample
PCNORM Float Normalization factor
PCOFS Float Offset

Table data

Table data is saved in one fixed-size column (with one notable exception, see below). The type of this column depends
on the input data type and/or the compression algorithm:

Compression Column type
none Same as input data
rle Same as input data
diffrle Same as input data
quantization 8-bit integer
polynomial 8-bit integer (but see below)
zlib 8-bit integer
bzip2 8-bit integer

Debug-mode for polynomial compression

Due to its relative complexity, polynomial compression can be saved using a special debug mode. In this mode,
instead of coding the compressed stream as a raw sequence of 8-bit integers, the compressor saves information about
each chunk separately. This mode is not as efficient as the default mode, but it allows to understand the compressor’s
performance more easily.

If a data stream is compressed using polynomial compression in debug mode, the keyword PCDEBUG in the HDU
header is set to 1, and the following columns are saved:

Name Type Row size Description
ISCOMPR Logical 1 True if this chunk has been compressed
CKLEN Integer 1 Length of this chunk
UNCOMPR Double Variable If ISCOMPR is False, the uncompressed samples
POLY Double Variable If ISCOMPR is True, the polynomial coefficients
CHMASK 8-bit integer Variable If ISCOMPR is True, the Chebyshev bit mask
CHEBY Double Variable If ISCOMPR is True, the Chebyshev coefficients

The length of the rows in variable-length columns is the following:

• UNCOMPR: a number of elements equal to CKLEN;

• POLY: equal to deg 𝑝(𝑥) + 1;

• CHMASK: equal to ⌈𝑁 + 1⌉, where 𝑁 is CKLEN;

• CHEBY: equal to the number of bits in CHMASK that are equal to 1.

16 Chapter 5. Polycomp file format

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	How to get the latest Polycomp version
	Requisites

	An introduction to Polycomp
	Compressing files using polycomp
	Decompressing files using polycomp

	Writing a configuration file
	Basic syntax
	Specifying which data to compress
	Where to take the data to compress
	How to compress the data

	Optimizing polynomial compression parameters
	Scanning rectangular regions of the parameter space
	Simplex-downhill strategy

	Polycomp file format
	Keywords
	Table data
	Debug-mode for polynomial compression

	Indices and tables

